We first obtain logn∼x.
Thus 2π(x)≈2x/logx≈2logn/loglogn.
2alogn=elog2alogn=ealognlog2=(ealogn)log2=(elogna)log2=(na)log2=nalog2.
We have 2alogn=nalog2. Thus 2logn/loglogn=2(1/loglogn)⏞Consider this alogn=n(1/loglogn)log2=nlog2/loglogn.
d(n)≈2π(x)=2logn/loglogn=nlog2/loglogn.