Some Steps in Introduction to Section 13.10

We first obtain lognx.

Thus 2π(x)2x/logx2logn/loglogn.


2alogn=elog2alogn=ealognlog2=(ealogn)log2=(elogna)log2=(na)log2=nalog2.


We have 2alogn=nalog2. Thus 2logn/loglogn=2(1/loglogn)Consider this alogn=n(1/loglogn)log2=nlog2/loglogn.


d(n)2π(x)=2logn/loglogn=nlog2/loglogn.