Let x=5.
P(5)=∏p≤5{1+f(p)+f(p2)+…}=(1+f(2)+f(22)+f(23)+…)(1+f(3)+f(32)+f(33)+…)(1+f(5)+f(52)+f(53)+…).
A={2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,…},B={7,11,13,14,17,19,21,22,23,…},{n:n>x}={6,7,8,9,10,11,12,13,14,15,16,…}.
∑n=1∞f(n)−∑n∈Af(n)=∑n∈Bf(n).
(f(1)+f(2)+f(3)+f(5)+f(6)+f(7)+…)−(f(2)+f(3)+f(4)+f(5)+f(6)+f(8)+…)=f(7)+f(11)+….
∑n∈B|f(n)|≤∑n>x|f(n)|.
|f(7)|+|f(11)|+|f(13)|+…≤|f(6)|+|f(7)|+|f(8)|+…