Illustration of Proof of Theorem 11.6

Let x=5.

P(5)=p5{1+f(p)+f(p2)+}=(1+f(2)+f(22)+f(23)+)(1+f(3)+f(32)+f(33)+)(1+f(5)+f(52)+f(53)+).


A={2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,},B={7,11,13,14,17,19,21,22,23,},{n:n>x}={6,7,8,9,10,11,12,13,14,15,16,}.


n=1f(n)nAf(n)=nBf(n).

(f(1)+f(2)+f(3)+f(5)+f(6)+f(7)+)(f(2)+f(3)+f(4)+f(5)+f(6)+f(8)+)=f(7)+f(11)+.


nB|f(n)|n>x|f(n)|.

|f(7)|+|f(11)|+|f(13)|+|f(6)|+|f(7)|+|f(8)|+