Steps in Proof of Theorem 11.3

|h(N)|=|Nsk||n=N+1h(n)nsk|=Nσk|n=N+1h(n)nsk|.

Substituting σ=σk and N=N+1 in Lemma 1, we get

|h(N)|Nσk(N+1)(σkc)n=N+1|h(n)|nc=Nσk(N+1)σk(N+1)cn=N+1|h(n)|ncconvergesA=(NN+1)σkA.