|h(N)|=|−Nsk||∑n=N+1∞h(n)n−sk|=Nσk|∑n=N+1∞h(n)n−sk|.
Substituting σ=σk and N=N+1 in Lemma 1, we get
|h(N)|≤Nσk(N+1)−(σk−c)∑n=N+1∞|h(n)|n−c=Nσk(N+1)σk(N+1)c∑n=N+1∞|h(n)|n−c⏟converges⏟A=(NN+1)σkA.