Illustration With Modulus 5

Let pα=5.

201(mod5),b(1)=ind21=0,212(mod5),b(2)=ind22=1,224(mod5),b(4)=ind24=2,233(mod5),b(3)=ind23=3.

χh(n)={ei2πhb(n)/4 if 5n,0 if 5n.

n12345χ0(n)ei2π0b(1)/4ei2π0b(2)/4ei2π0b(3)/4ei2π0b(4)/40χ1(n)ei2π1b(1)/4ei2π1b(2)/4ei2π1b(3)/4ei2π1b(4)/40χ2(n)ei2π2b(1)/4ei2π2b(2)/4ei2π2b(3)/4ei2π2b(4)/40χ3(n)ei2π3b(1)/4ei2π3b(2)/4ei2π3b(3)/4ei2π3b(4)/40

n12345χ0(n)ei2π00/4ei2π01/4ei2π03/4ei2π02/40χ1(n)ei2π10/4ei2π11/4ei2π13/4ei2π12/40χ2(n)ei2π20/4ei2π21/4ei2π23/4ei2π22/40χ3(n)ei2π30/4ei2π31/4ei2π33/4ei2π32/40

n12345χ0(n)11110χ1(n)1ii10χ2(n)11110χ3(n)1ii10