# Multiplicative Property of Characters
Let $ G $ be an arbitrary group. Let $ a \in G $ and $ b \in G $.
$$ f(ab) = f(a) f(b). $$
Let $ \cdot $ denote the group operator and $ \times $ denote the
multiplication operator for complex numbers.
$$ f(a \cdot b) = f(a) \times f(b). $$
Note:
* The variables $ a $ and $ b $ represent elements of a group $ G $.
* The character $ f $ is a complex-valued function.
* In the notation $ f(a) $, $ a \in G $ and $ f(a) \in \mathbb{C} $.
* If we represent the group operator as $ \cdot $, then $ f(ab) = f(a \cdot b) $.
* The notation $ f(a) f(b) $ represents multiplication of two complex numbers $ f(a) $ and $ f(b) $.