ψ(x)=∑m≤log2xϑ(x1/m)=ϑ(x)+∑2≤m≤log2xϑ(x1/m).
Subtracting ϑ(x) from both sides, we get
ψ(x)−ϑ(x)=∑2≤m≤log2xϑ(x1/m)≤∑2≤m≤log2xx1/mlogx1/m≤∑2≤m≤log2xx1/2logx1/2≤(log2x−1)x1/2logx1/2≤(log2x)xlogx.